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Abstract

Semantic segmentation is an important task for autonomous driving. A powerful autonomous driving sys-

tem should be capable to handle images under all conditions, including nighttime. Generating accurate and

diverse nighttime semantic segmentation datasets is crucial for enhancing the performance of computer vi-

sion algorithms in low-light conditions. In this thesis, we introduce a novel approach named NPSim, which

enables the simulation of realistic nighttime images from real daytime counterparts with monocular inverse

rendering and ray tracing. NPSim comprises two key components: mesh reconstruction and relighting. The

mesh reconstruction component generates an accurate representation of the scene’s structure by combining

geometric information extracted from the input RGB image and semantic information from its correspond-

ing semantic labels. The relighting component integrates real-world nighttime light sources and material

characteristics to simulate the complex interplay of light and object surfaces under low-light conditions.

The scope of this thesis mainly focuses on the implementation and evaluation of the mesh reconstruction

component. Through experiments, we demonstrate the effectiveness of the mesh reconstruction component

in producing high-quality scene meshes and its generality across different autonomous driving datasets. We

also propose a detailed experiment plan for evaluating the entire pipeline, including both quantitative met-

rics in training state-of-the-art supervised and unsupervised semantic segmentation approaches and human

perceptual studies, aiming to indicate the capability of our approach to generate realistic nighttime images

and the value of our dataset in steering future progress in the field. NPSim not only has the ability to address

the scarcity of nighttime datasets for semantic segmentation, but it also has the potential to improve the

robustness and performance of vision algorithms under low-lighting conditions.





Contents

1 Introduction 1

2 Related Work 3

2.1 Novel View Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Day-to-Night Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Nighttime Driving Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Materials and Methods 5

3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Geometric Mesh Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Depth Refinement Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.1 Dual-reference Cross-bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.2 Dual-reference Variance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.3 Normal-Guided Depth Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Mesh Post-processing Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5.1 Uncertain Faces Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5.2 Mesh Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Realistic Nighttime Scene Relighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6.1 Material Characteristics Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6.2 Probabilistic Light Source Activation and Relighting . . . . . . . . . . . . . . . . . 13

3.6.3 Image Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Results and Experiment Plans 15

4.1 Geometry Mesh Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Mesh Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.3 Generalization to Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Testing Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 19

A Light Source Annotation Examples 21

B Hyper-parameter Tuning 23

I



CONTENTS

C Mesh Reconstruction Examples 25

D Model Selection 27

II



List of Figures

3.1 Method overview. Our pipeline contains two components. The Geometric Mesh Recon-

struction component first utilizes network Fg to estimate the geometric information of an

input RGB image, then reconstruct scene mesh based on depth using the Worldsheet [17]

(A.II: Section 3.3). It also contains a depth refinement kernel (A.I: Section 3.4) and a mesh

post-process kernel (A.III: Section 3.5) to optimize depth and mesh, respectively. The Real-

istic Nighttime Scene Relighting (B: Section 3.6) component first generates nighttime light

sources using probabilistic light source activation. Then predict the material characteristics

using network Fir. Following that, it uses ray tracing to render the linear nighttime clear

image. Last, it processes the linear nighttime image to simulate artifacts and finally gen-

erates the output nighttime image In. In this thesis, we implemented the Geometric Mesh

Reconstruction component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Annotation Statistics. We show the annotation statistics of 230 images nighttime reference

images. The left image shows the number of instances of each type of light source, and the

right image shows the number of pixels occupied by each type of light source. All results

are presented in the base-10 logarithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Annotation Examples. We present several examples of our inactive light source annota-

tion. The left column shows the input daytime RGB image, the middle column shows the

annotated inactive light source mask, where each instance has its own identity and bounding

box, and the right column superimposes the RGB image and the light source mask. . . . . . 7

3.4 Depth comparison before and after the Dual-reference cross-bilateral filter. We present

two examples for depth comparison. Column (a) shows the original RGB image, column

(b) shows the depth estimated by iDisc [39], and column (c) shows the depth after dual-

reference cross-bilateral filter optimization. The above comparison shows that the dual-

reference cross-bilateral filter improves the depth estimation at the pixel level. . . . . . . . . 9

3.5 Uncertain region detected by the Dual-reference variance filter. Column (a) shows the

original RGB image, column (b) shows the semantic annotation and column (c) shows the

generated uncertain map, where the uncertain region is represented by the yellow region. . . 10

3.6 Completed uncertain region. Column (a) shows the original RGB image, column (b)

shows the semantic annotation and column (c) shows the completed uncertain region, where

the uncertain region is represented by the yellow region. . . . . . . . . . . . . . . . . . . . 12

4.1 Mesh reconstruction result comparison. We compared the mesh reconstruction result

with mesh reconstructed by other methods with the following settings, (1): Worldsheet with

MiDaS depth, (2): Worldsheet with iDisc depth, (3): SIMBAR reconstruction. Our method

can preserve more accurate geometric information and construct smoother mesh surfaces

than all other methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III



LIST OF FIGURES

4.2 Inferred surface normal comparison. We compared the surface normal inferred from the

reconstructed mesh with other methods (as stated in Fig. 4.1.2). Our reconstructed meshes

have more accurate surface normal with respect to iDisc [39] surface normal. . . . . . . . . 16

4.3 Mesh comparison from different angles and background mesh. We compared the mesh

reconstruction result with mesh reconstructed by other methods (, as stated in Fig. 4.1.2.)

with a 3 meters zoom in and a 45 degrees rotation clockwise as well as background mesh

generated with our pipeline. The result shows that our method can efficiently break the un-

expected connection between foreground and background objects and make the background

mesh watertight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Optimization loss curve. We present the optimization loss curve of two examples shown

in Fig. 4.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Mesh reconstructed from different datasets. We showcase the mesh reconstruction based

on two different datasets: BDD100K dataset [65] (column (a) and (b)) and Cityscapes

dataset [6] (column (c) and (d)). The above results demonstrate the capability of our pipeline

to generate reasonable scene mesh when applied to other datasets. However, we notice that

roads close to the camera are not correctly reconstructed, this is a result of inaccurate surface

normal prediction caused by the ego vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.1 More Annotation Examples. We present more examples of our inactive light source an-

notation. The left column shows the original RGB image, the middle column shows the

annotated inactive light source mask, where each instance has its own identity and bounding

box, and the right column superimposes the RGB image and the light source mask. . . . . . 22

B.1 Small λ2. We present an example of surface normal and final mesh with different λ2 val-

ues. The upper row shows an example of setting λ2 too small and the lower row shows an

example of setting λ2 too large. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.2 Large λ3. We present an example of surface normal and final mesh when setting λ3 too large. 24

C.1 More mesh reconstruction examples. We present more examples of mesh reconstructed

using our method and their corresponding surface normal. . . . . . . . . . . . . . . . . . . 25

C.2 More mesh reconstruction examples. We present more examples of mesh reconstructed

using our method and their corresponding surface normal. . . . . . . . . . . . . . . . . . . 26

IV



List of Tables

3.1 Inactive light source class and their definition. We defined 21 types of inactive light

sources, each of them belonging to one category, including building, vehicle, object and

group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.1 Inactive light sources examples. We present examples of different types of inactive light

sources. The second and third columns show the daytime appearance and nighttime appear-

ance of each example, respectively, arranged in the same order. . . . . . . . . . . . . . . . . 21

D.1 iDisc normal estimation retrain result. We present three different settings of our networks

and their corresponding evaluation result. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

V



LIST OF TABLES

VI



Chapter 1

Introduction

Accurately parsing input images under uncommon visual conditions is a required ability for safe autonomous

driving systems. Thus, semantic segmentation datasets under various adverse conditions are required, es-

pecially at nighttime. However, most well-known autonomous driving datasets such as the Cityscapes

dataset [6] and KITTI dataset [13] are mostly under normal conditions (clear daytime image with high il-

lumination and low exposure time). Though several recent works, including Oxford RobotCar dataset [34],

BDD100K [65] dataset and ACDC dataset [47], have been focusing on creating datasets under nighttime

conditions, there are still obvious limitations and gaps. For example, the Oxford RobotCar does not contain

any semantic annotations and thus is not capable for training a segmentation network. BDD100K dataset

contains a large number of nighttime images; however, only 345 of them can be used for the task of se-

mantic segmentation. ACDC dataset contains 4006 adverse condition images in which 1006 of them are

in the nighttime; it still shows a drastic drop in the accuracy of semantic scene understanding at nighttime

compared to other conditions for both segmentation algorithms [3, 4, 10, 28, 31, 52] and domain adaptation

methods [26, 32, 45, 53, 55, 56, 63]. What makes things even worse is the increased difficulty in the seman-

tic annotation of real nighttime images due to their low quality, which leads to annotation errors that have a

negative impact on the quality of models trained on such data. An alternative approach for semantic night-

time scene understanding is via the generation of partially synthetic nighttime data. Specifically, individuals

can obtain images captured during the daytime, which is less noisy and relatively easier to annotate, then

transform these images to nighttime through style transfer [11, 12]. Subsequently, annotations on daytime

images can be directly used to the synthesized nighttime images, given that the underlying semantic content

remains consistent. However, style transfer falls short in generating realistic results due to its inability to ac-

count for factors such as changes in illumination that occur from day to night and the complicated geometry

and variations in light sources. In this thesis, we propose the NPSim, an alternative approach for generating

partially synthetic nighttime images via monocular inverse rendering and ray tracing.

Our proposed method NPSim aims to generate photo-realistic nighttime images based on clear daytime

images and their corresponding standard semantic annotations. Importantly, we also utilize light source

annotations as additional input. Different from previous works that used style transformation [67], 2D [41]

or implicit representation such as NeRF [36], NPSim focuses on the fundamentals of scene lighting, us-

ing traditional rendering method ray tracing to produce realistic nighttime images by restoring the object

orientation, material characteristics, and light sources based on the input image. It leverages the explicit

representation by reconstructing scene mesh from a given RGB image. To preserve more accurate geomet-

ric information, we propose Geometry Mesh Reconstruction component: We first utilize an off-the-shelf

depth and normal estimation model to predict the initial depth map and normal map. Then we use pre-

dicted depth to reconstruct the scene mesh and refine it using a normal-guided optimization-based method.

Besides, our proposed NPSim considers real-world light sources to generate realistic nighttime images. In

1



CHAPTER 1. INTRODUCTION

the Realistic Nighttime Scene Relighting component, we employ ray tracing to generate nighttime visuals

by considering geometric scene mesh from previous steps, material attributes, and authentic light sources

from the real world. Our probabilistic light source activation also has the potential to activate different light

source combinations, generating multiple nighttime images based on one single input image.

In summary, the contributions of our work are:

• A dataset of inactive light sources and the corresponding light source dataset, containing strength and

chromaticity tuples (Section 3.2).

• A physically-based day-to-night simulation pipeline that contains a Geometry Mesh Reconstruction

component (Section 3.3, Section 3.4, Section 3.5) and a Realistic Nighttime Scene Relighting com-

ponent (Section 3.6).

In the experiment, our method can achieve better geometry reconstruction compared with previous works [17,

66]. Additionally, we show that our method can be generalized to other autonomous driving datasets such

as the Cityscapes dataset [6] and the BDD100K dataset [65] for the task of mesh reconstruction. The struc-

ture of the thesis is as follows: We first describe methods we used for data collection, then we introduce

our day-to-night transformation method NPSim. In the end, we present the results of the Geometric Mesh

Reconstruction component and testing plans for the entire data generation pipeline.
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Chapter 2

Related Work

Our work aims to create realistic nighttime images for autonomous driving based on single-view daytime

images, it is closely related to novel view synthesis, day-to-night transformation and nighttime driving scene

understanding. In this section, we will present an overview of the most relevant works and their limitations.

2.1 Novel View Synthesis

View synthesis is a fundamental task in computer vision that involves generating new images of a scene

from different viewpoints. Early works focused on geometric reconstruction usually combine Structure-

from-Motion (SfM) and Multi-View Stereo (MVS) that rely on sparse feature matching and depth estima-

tion. However, these methods require multiple viewpoints of a single scene and cannot handle complex

scenes [48]. The recent influential Neural Radiance Fields (NeRF) technique [36] shows strong ability in

novel view synthesis and is capable for both indoor and outdoor scenes [25, 33, 50, 44] or objects [51]. Dif-

ferent from previous works that leverage geometry information, it often designs as a multi-layer perceptron

(MLP) [40] that maps 3D coordinates to radiance and density values. NeRF learns to model the radiance

field by minimizing the difference between the synthesized images and the actual training image during

training, then renders different views of the scene at test time. Though being powerful and reliable in view

synthesis, NeRF suffers from its high computational cost and limited generalizability. Many other works

also explored view synthesis using generative networks, such as Variational Autoencoders (VAEs) [22],

Generative Adversarial Networks (GANs) [14] and Diffusion Models [16]. They have shown remarkable

abilities in generating realistic images, but their lack of 3D understanding makes it hard to capture the

underlying geometry and thus may generate artifacts in novel views.

2.2 Day-to-Night Transformation

Day-to-night transformation is a challenging task that aims to convert images captured during the day into

realistic nighttime representations. This process relies on scene relighting, a core task in computer graphics

and computer vision that involves modifying the lighting conditions and then rendering the original scene

under new conditions. Many previous works have explored this with different methodologies. [27] learns

inverse rendering from a single image, estimating the geometry and materials of the scene and spatially-

varying illumination. [62] proposed to complement the intrinsic estimation from volume rendering using

NeRF and from inversing the photometric image formation model using convolutional neural networks

(CNNs) for outdoor scene relighting. Differently, [66] leveraging explicit geometric representations from

a single image by estimating depth information using an external network to perform scene relighting.

3



CHAPTER 2. RELATED WORK

All these methods have achieved remarkable performance in scene relighting. Nevertheless, those meth-

ods only handle daytime images for both input and output, neglecting the impact of internal light sources.

As a result, they are inadequate for accomplishing effective day-to-night transformation. For day-to-night

transformation, most works utilized generative methods, such as CycleGAN [67], pix2pix [18] and Enlight-

enGAN [19]. Such purely data-driven approaches cannot accurately render spatially varying illumination,

especially at night. Furthermore, although these methods sometimes do succeed in turning inactive light

sources (e.g. street lights or windows) from off to on, the lights they produce are not accurate and realistic.

Relighting daytime images to nighttime is also addressed in [41], which did not consider 3D geometry or

materials and thus cannot model the interaction of light with the scene at night time. Moreover, nighttime-

activated light sources are modelled in 2D instead of 3D, which leads to unrealistic illumination in the output

image.

2.3 Nighttime Driving Scene Understanding

Parsing and understanding the driving scene is a crucial ability for autonomous driving cars. Semantic

segmentation has developed rapidly over the past few years and achieved remarkable progress. However,

comprehension of nighttime driving scenes is still in its early stages, mainly due to the significant domain

gap between daytime and nighttime scenes. Some works performed domain adaptation to close this gap. [23]

Utilized a physics-based prior for domain adaptation, aiming to minimize the distribution shift between

daytime and nighttime neural network feature maps. [63] then relied on the pixel-level adaptation via explicit

transforms from source to target. An alternative method is to train traditional segmentation models on

nighttime driving datasets, however, this requires annotated nighttime images which are hard to obtain.

Though many datasets such as the Oxford RobotCar dataset and the BDD100K dataset have been including

nighttime images [65, 34], there has been a lack of emphasis on nighttime scene comprehension. As a

result, these datasets do not offer adequate resources for training an effective model on nighttime image

segmentation. A recently proposed autonomous driving dataset ACDC focused specifically on adverse

conditions, contains 4006 images that are evenly distributed across four weather conditions: rain, fog, snow

and night [47]. Each image comes with a pixel-level semantic annotation and a reference image that is

taken at the same location under normal conditions (clear daytime). Though the ACDC dataset puts a larger

emphasis on nighttime (it includes 1006 nighttime images, with 400 from the training set, 106 from the

validation set and 500 from the testing set), the gap still remains due to the shortage of annotated nighttime

images caused by the difficulties of manual annotation.

Different from all methods discussed above, our method targets the generation of realistic nighttime images

through simulation based on images from daytime datasets. In our image simulation pipeline, we utilize

geometric information to reconstruct scene mesh and consider real-world light sources during relighting. As

shown in the remaining sections of the paper, our work has the potential to close the gap in nighttime driving

scene understanding.
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Chapter 3

Materials and Methods

In this section, we first formalize the problem setting. Next, we introduce our data preparation procedure.

Finally, we introduce our data generation pipeline involving geometry mesh reconstruction and realistic

nighttime scene relighting. Fig. 3.1 shows an overview of our data generation pipeline.

3.1 Problem Setting

Our goal is to generate realistic nighttime images based on daytime images in the ACDC dataset [47] ref-

erence split using a physics-based method. As described in Section 2.3, the ACDC dataset reference split

contains 2006 daytime images from the training and validation reference set, in which 1003 of them come

with a corresponding semantic annotation. Given those 1003 images and their semantic annotations, we

propose a data processing pipeline that generates realistic nighttime images for each input image.

3.2 Data Preparation

As shown in Fig. 3.1, except for daytime RGB images Id and its corresponding segmentation annotations

S, our pipeline also takes a binary mask Mi indicating the inactive light sources in Id, and a set of nighttime

light sources E as input. In this section, we show the techniques employed for the creation of binary masks

and the light sources.

Binary mask Mi Though some works have already been focusing on light source separation [64], they

are not sufficient in such complex situations. Thus, we manually annotated inactive light sources using

Segments.ai [1], an online image labelling platform based on super-pixels. To control the quality of our

annotations, two annotators first annotated 100 images, then conducted a cross-check by checking each

other’s annotations and then modifying the annotation rule until a consensus was reached. Ultimately, we

defined 12 classes of inactive light sources and categorized them into three primary groups: buildings,

vehicles, and objects. We also propose that light sources from the same category should be mutually related,

for example, windows on the same floor or car lights from the vehicle. Thus, to ensure the interconnection

between light sources, we also defined 9 group classes, see Table 3.1 for all classes and their definitions.

In this thesis, we annotated 230 out of 253 images from the nighttime reference split (we filtered out 23

images as they were taken at twilight). Fig. 3.2 shows the statistics of annotated pixels and the number of

instances for each class. Fig. 3.3 shows some visual examples of our annotation. More examples can be

found in Appendix A.

Inactive light source Id To make our nighttime images as realistic as possible, we planned to collect the

light source dataset E from a real-world setting. Following the method described in [41], we will first place

gray cards under different nighttime illuminations (i.e. near different light sources identified in Table 3.1).

Next, we will capture images of each gray card to extract both chromaticity value [ r
g
, b
g
] and strength value

s.
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CHAPTER 3. MATERIALS AND METHODS

Figure 3.1: Method overview. Our pipeline contains two components. The Geometric Mesh Reconstruc-

tion component first utilizes network Fg to estimate the geometric information of an input RGB image,

then reconstruct scene mesh based on depth using the Worldsheet [17] (A.II: Section 3.3). It also contains a

depth refinement kernel (A.I: Section 3.4) and a mesh post-process kernel (A.III: Section 3.5) to optimize

depth and mesh, respectively. The Realistic Nighttime Scene Relighting (B: Section 3.6) component first

generates nighttime light sources using probabilistic light source activation. Then predict the material char-

acteristics using network Fir. Following that, it uses ray tracing to render the linear nighttime clear image.

Last, it processes the linear nighttime image to simulate artifacts and finally generates the output nighttime

image In. In this thesis, we implemented the Geometric Mesh Reconstruction component.
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Figure 3.2: Annotation Statistics. We show the annotation statistics of 230 images nighttime reference

images. The left image shows the number of instances of each type of light source, and the right image

shows the number of pixels occupied by each type of light source. All results are presented in the base-10

logarithm.
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CHAPTER 3. MATERIALS AND METHODS

No. Name Category Detailed explanation

1 window building building Building windows that may emit light at night

2 window parked vehicle Windows of parked vehicles, mainly cars

3 parked front vehicle Front light of parked vehicles, mainly cars

4 parked rear vehicle Rear light of parked cars, mainly cars

5 moving front vehicle Front light of moving vehicles, mainly cars

6 moving rear vehicle Rear light of moving vehicles, mainly cars

7 window transport vehicle Windows of public transportation that may emit light

8 street light HT object High temperature traffic lights, usually brighter

9 street light LT object Low temperature traffic lights, usually dimer

10 advertisement object Advertisements that may emit light at night

11 clock object Clocks that emit light at night, mostly appear at bus stop

12 inferred object Light sources whose light colour can be inferred from its daytime color

13 windows group group Group of windows that belong to the same floor of the same building

14 car group group Group of light sources that belong to the same car

15 truck group group Group of light sources that belong to the same truck

16 bus group group Group of light sources that belong to the same bus

17 bicycle group group Group of light sources that belong to the same bicycle

18 motorcycle group group Group of light sources that belong to the same motorcycle

19 train group group Group of light sources that belong to the same train

20 traffic light group group Group of traffic lights that belong to the same panel

21 traffic sign group group Group of light sources that belong to the same sign

Table 3.1: Inactive light source class and their definition. We defined 21 types of inactive light sources,

each of them belonging to one category, including building, vehicle, object and group.

(a) Input daytime RGB image (b) Inactive light source mask (c) Superposition of (a) and (b)

Figure 3.3: Annotation Examples. We present several examples of our inactive light source annotation.

The left column shows the input daytime RGB image, the middle column shows the annotated inactive light

source mask, where each instance has its own identity and bounding box, and the right column superimposes

the RGB image and the light source mask.
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CHAPTER 3. MATERIALS AND METHODS

3.3 Geometric Mesh Reconstruction

The first component of our pipeline involves reconstructing scene mesh from a daytime RGB image and

its corresponding segmentation annotation. Depth and surface normal are key geometric information that

we rely on to reconstruct the mesh. In particular, we use iDisc [39] as out Geometry Network (Fg) to

estimate depth (D) and normal (N ). For depth estimation, we directly utilize the model pre-trained on the

KITTI dataset [13]. For normal estimation, the pre-trained model on the NYUv2 dataset [38] doesn’t adapt

well to the ACDC dataset [47], so we retrain the iDisc model using the DIODE dataset [54] outdoor split,

initializing the training with pre-trained swin transformer [30] weight.

Inspired by previous work SIMBAR [66], we apply Worldsheet [17], a novel view geometry scene

synthesis method to reconstruct scene mesh. Worldsheet builds a scene mesh by warping a grid sheet onto

the scene geometry via grid offset and depth. The grid exhibits a horizontal offset ∆x̂ and a vertical offset

∆ŷ. Importantly, there is no need for predicting or adjusting individual vertices in the x and y directions.

The mesh vertices are formulated from grid offset and depth as:

Vw,h =





dw,h · (x̂w,h +∆x̂w,h) · tan (θF /2)
dw,h · (ŷw,h +∆ŷw,h) · tan (θF /2)

dw,h



 (3.1)

Where d denotes the external depth, x and y denote the horizontal and vertical location of vertices in the

mesh coordinates equally spaced from −1 to 1, and θF is the camera field of view. Thus, we are able to

reconstruct the scene mesh based on external depth. However, this requires that the input depth maps we

provide have high precision. In the next two sections, we will introduce the Depth Refinement Kernel that

optimizes depth before the reconstruction and the Mesh Post-process Kernel after the reconstruction.

3.4 Depth Refinement Kernel

The main purpose of the Depth Refinement Kernel is to optimize depth based on segmentation annotations

and predicted normal map, where we treat predicted normal as ground truth during optimization. This kernel

consists of three parts: Dual-reference cross-bilateral filter, Dual-reference variance filter and Normal guided

depth refinement.

3.4.1 Dual-reference Cross-bilateral Filter

Inspired by [45], we apply the Dual-reference cross-bilateral filter as the first building block of our Depth

Refinement Kernel. In our work, we optimize input depth d̂ using the RGB image and the semantic annota-

tion to obtain filtered depth d, shown as Eq. (3.2).

d(p) =

∑

q∈N (p)Gσs
(∥q− p∥) [δ(h(q)− h(p)) + µGσc

(∥J(q)− J(p)∥)] d̂(q)
∑

q∈N (p)Gσs
(∥q− p∥) [δ(h(q)− h(p)) + µGσc

(∥J(q)− J(p)∥)]
(3.2)

Similar to [45], we use the CIELAB counterpart of the input RGB imageR, denoted by J. Where p, q means

pixel locations, N means neighbouring pixels and h means semantic classes. δ is the Kronecker delta, G

denotes the Gaussian kernel, where Gσs
is the spatial Gaussian kernel and Gσc

is the colour Gaussian kernel

lead by constant µ. The numerator and denominator of this equation consist of two main components, in

which δ(h(q) − h(p)) is for semantic references and µGσc
(∥J(q) − J(p)∥) is for colour references. The

semantic component of this equation infers that only pixels from different semantic classes can contribute to

this term, making the edge of each semantic object sharper. At the same time, the colour component helps

to preserve depth that can be implied from the colour variation of the input RGB image. Following [45],

8
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(a) Original RGB image (b) Depth before (c) Depth after

Figure 3.4: Depth comparison before and after the Dual-reference cross-bilateral filter. We present

two examples for depth comparison. Column (a) shows the original RGB image, column (b) shows the

depth estimated by iDisc [39], and column (c) shows the depth after dual-reference cross-bilateral filter

optimization. The above comparison shows that the dual-reference cross-bilateral filter improves the depth

estimation at the pixel level.

we initially set µ = 5 and σs = 10. For the colour component, we discovered that when its weight grows

larger, the depth change at semantic edges will become smoother and more spurious faces will be created (as

described in Section 3.4.2). Thus, we decreased its weight and set σc = 5. Fig. 3.4 shows the comparison of

depth maps before and after the Dual-reference cross-bilateral filter.

3.4.2 Dual-reference Variance Filter

One disadvantage of the Worldsheet [17] is that its generated scene mesh is an equal offsets mesh grid

with only one layer of vertices. This creates spurious faces at depth discontinuities, connecting foreground

objects with background objects. Although those spurious faces are not visible from the camera angle, they

will still generate unrealistic reflections during the final relighting process. To solve this issue, we designed

a Dual-reference variance filter to identify spurious faces based on depth maps and semantic annotations,

as shown in Eq. (3.3). We propose that spurious faces usually happen at uncertain regions that meet the

following two criteria: (1) regions that contain at least one semantic boundary. (2) regions that have a large

variation in depth. For instance, consider a scenario where a region includes both a section of a moving car

and a segment of the road or perhaps a part of a traffic sign alongside a portion of a building. We further

define a set of foreground objects that are used to identify semantic boundaries, including vehicles, persons,

poles, traffic lights and traffic signs.

U(r(p, l)) = (V(d(r(p, l))) > µ) and (V(h(r(p, l))) > 0) (3.3)

In Eq. (3.3), U(·) denotes the binary value of the uncertain map, p denotes pixel location and r(p, l) rep-

resents the square region with a size of l ∗ l pixels with p as the upper left corner. The two components

of Eq. (3.3) correspond to depth and semantic annotations, respectively. In the depth component d(·), we

alert the region to be uncertain if the variance of all depth inside region r(p, l) is larger than a constant µ.

In the semantic component h(·), we alert the region if variance of all semantic value inside region r(p, l) is

larger than zero: when a semantic change happens. Two components are connected by a logic and operator,

9
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(a) Original RGB image (b) Semantic annotation (c) Uncertain map

Figure 3.5: Uncertain region detected by the Dual-reference variance filter. Column (a) shows the orig-

inal RGB image, column (b) shows the semantic annotation and column (c) shows the generated uncertain

map, where the uncertain region is represented by the yellow region.

meaning the region will be marked as uncertain if both components are alerted simultaneously. In our ex-

periment, we set µ = 0.001 and l = 8. Fig. 3.5 shows two visual examples of the uncertain region detected

by the Dual-reference variance filter.

3.4.3 Normal-Guided Depth Refinement

Depth estimation provides coarse geometric information regarding the input image, while surface normal

offers further intricate local details. To increase depth accuracy, we propose an optimization-based depth

refinement method based on surface normal. For each input image, we formulate a loss function based on

the interrelationship between its depth and surface normal, then use gradient descent to optimize depth by

minimizing the loss. Next, we will describe loss terms we used for the normal-guided depth refinement.

Normal loss. Given a depth map, we can infer the surface normal by computing the cross product of gradient

vectors between neighbouring pixels, as shown in Eq. (3.4).

N̂ = ∇X×∇Y = (1, 0,
∂z

∂x
)× (0, 1,

∂z

∂y
) = (−

∂z

∂x
,−

∂z

∂y
, 1) (3.4)

Where ∂z
∂x

and ∂z
∂y

denotes the gradient of depth with respect to x and y in the camera space, which can be

computed via chain rule ∂z
∂x

= ∂z
∂u
· ∂u
∂x

and ∂z
∂y

= ∂z
∂v
· ∂v
∂y

. And the transformation between pixel space and

camera space is shown as Eq. (3.5).

u · d = fx · x+ cx ←→
∂u

∂x
=

fx
d

(3.5)

v · d = fy · y + cy ←→
∂v

∂y
=

fy
d

Where fx and fy denote the focal length along the x and y axis, cx and cy denote the principal point along

the x and y axis, respectively. The final expression of this loss is formalized in Eq. (3.6). In this equation,

we treated depth estimated by iDisc [39] Nest as ground truth.

Lnormal = ∥N̂−Nest∥
2
2 (3.6)

10
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Continuity loss. Although the normal loss can optimize depth to align its inferred normal with the reference

surface normal, it lacks the ability to account for sudden variations in depth. As a result, this creates spurious

faces, as discussed in Section 3.4.2. To tackle this issue, we proposed a continuity loss that directly optimizes

gradient vectors based on surface normal, formalized as Eq. (3.7).

Lcontinuity =
1

n

n
∑

i=1

((∇Xi ·Ni)
2 + (∇Yi ·Ni)

2) · (1− Ui) (3.7)

In this equation, U is the uncertain map derived by the dual-reference variance filter in Eq. (3.3), ∇X and

∇Y are gradient vectors computed in Eq. (3.4), n is the total number of pixels of the input image and i
represents the index of currently computing pixel. This loss term is aware of depth discontinuities as the

sudden depth change between neighbouring pixels will create a gradient vector that is opposite from the

normal vector, resulting large value of the dot product. Thus, it can help eliminate spurious faces created by

the normal loss. The participation of the uncertain mask term (1−Ui) deals with the case when foreground

objects have similar normal as background objects, avoiding the optimization process pushing them into the

background.

Depth loss. The optimization process should respect the initial depth predicted by iDisc [39], meaning that

the optimized depth should not deviate significantly from the initial estimation. Thus, we add a depth loss

that punishes any depth change with respect to the estimated depth, shown as Eq. (3.8).

Ldepth = ∥d̂− dest∥
2
2 (3.8)

In summary, the final loss we used to optimize depth is the weighted sum of each individual loss, shown

in Eq. (3.9), where λ’s are the weights for the loss terms.

Lfinal = λ1Lnormal + λ2Lcontinuity + λ3Ldepth (3.9)

In our experiments, we applied grid search to determine those hyper-parameters and set λ1 = 1, λ2 = 1 and

λ3 = 5, more details can be found in Appendix B. With those differentiable loss terms, we optimize the

predicted depth using the gradient-based optimizer Adam [21] for 1000 steps with a learning rate of 0.0001.

3.5 Mesh Post-processing Kernel

As explained in Section 3.4.2, the scene mesh reconstructed by Worldsheet [17] constitutes a single-layer

mesh grid based on conventional depth map prediction. Consequently, its outcomes contain spurious faces

and inaccurately link foreground and background objects within the invisible areas of the input image. To

solve this issue, [59] proposed to predict the density field of the input image and map the location in the

frustum to volumetric density in order to learn the real 3D feature. However, the performance of their method

on complex scenes such as images in the ACDC [47] dataset is limited. To bridge the gap, we designed a

Mesh Post-process Kernel that contains two steps: uncertain faces deletion and mesh completion.

3.5.1 Uncertain Faces Deletion

The first part of Mesh Post-process Kernel deals with the removal of spurious faces created by the World-

sheet [17]. Specifically, we first perform re-projection of all vertices from 3D to 2D and flagged vertices

located within the uncertain area, as described in Section 3.4.2, as uncertain vertices. Furthermore, we de-

fined faces that contain at least one uncertain vertex as spurious faces. Following this, we traverse through

all faces and remove those that are identified as spurious faces. The resulting object contains the foreground

and background object mesh separately, as well as point clouds between them.
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(a) RGB input (b) Semantic annotation (c) New uncertain region

Figure 3.6: Completed uncertain region. Column (a) shows the original RGB image, column (b) shows

the semantic annotation and column (c) shows the completed uncertain region, where the uncertain region

is represented by the yellow region.

3.5.2 Mesh Completion

The first part of the Mesh Post-process Kernel introduces holes in the mesh surface. The second part is

designed to complete these holes and ensure the mesh surface becomes watertight. To achieve this, we first

determine regions that need to be completed by finding the union of uncertain regions and their neighbouring

foreground semantic segments. After that, we complete the mesh sheet by adding vertices into the newly

determined uncertain region. In particular, for each newly determined uncertain region, we break it into

horizontal lines with one-pixel height. Then adding linearly distributed vertices based on their left and

right vertices location. In the end, we add faces between newly added vertices and boundary vertices to

make the mesh sheet watertight. Fig. 3.6 shows an example of the newly determined uncertain region, and

Algorithm 1 shows the operation process. Furthermore, to ensure the pixel-level accuracy of foreground

objects, we also apply mesh completion to foreground objects. For the intersection of uncertain regions

and foreground object semantics, we select a pixel that is adjacent to the persistent foreground semantics.

Here, we assigned the vertex depth as the average of its neighbouring vertices. Following that, we extend

this operation to all pixels within the intersection region by employing a breadth-first search approach.

Lastly, we establish connections between the newly introduced foreground vertices and their corresponding

persisting foreground mesh, effectively rendering each foreground object watertight.

3.6 Realistic Nighttime Scene Relighting

The second component of our pipeline aims to relight the reconstructed scene for realistic nighttime images

based on material characteristics and nighttime light sources, which involves four steps. Though we did

not implement this component in this thesis, we will explain the detailed method in the rest of this section.

First of all, we utilize an inverse rendering network Fir to predict the material characteristics, and then

we will use a probabilistic light source activation to generate light sources. After that, we plan to apply

the traditional rendering technique ray tracing to render clear linear nighttime images. In the end, we will

also run post-processing to the clear nighttime image to simulate artifacts caused by the camera, including

exposure time, noise and ISP. The remaining part of this section illustrates each step in detail.

12
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Algorithm 1 Background Mesh Completion Algorithm

Require: Binary mask list M indicating new uncertain maps, Incomplete mesh sheet Gu

Ensure: Each mask maps to a region that needs to be completed on the mesh sheet

1: for Every mask m ∈M do

2: It ← top row index of m that has missing vertex

3: Ib ← bottom row index of m that has missing vertex

4: for i = It to Ib do

5: Jl ← index of the leftmost vertex row i that is missing

6: Jr ← index of the rightmost vertex row i that is missing

7: Gl ← Gu[i][Jl − 1]
8: Gr ← Gu[i][Jr + 1]
9: for j = Jl to Jr do

10: Gu[i][j]←
Gl(jr−j+1)+Gr(j−jl+1)

jr−jl+2 ▷ Add vertices uniformly between Gl and Gr

11: end for

12: end for

13: end for

14: Connect vertices in Gu to form faces ▷ Make G watertight triangle mesh

3.6.1 Material Characteristics Prediction

Many prior studies have been focused on predicting material characteristics on small objects [24, 20] or

indoor scenes [49, 60, 37, 27]. Nevertheless, only a few of them have made an attempt to tackle the same

task with outdoor datasets [57]. In our work, we explored different existing methods and tested their perfor-

mance on a synthetic outdoor optical flow dataset MPI Sintel [2]. Our testing results show that most indoor

methods demonstrate good generalization capabilities on the outdoor dataset, likely due to the relatively

small disparity between outdoor and indoor materials. Ultimately, based on these findings, we employe [27]

as our inverse rendering network Fir to predict albedo and roughness from the ACDC [47] RGB images. In

the future, we will also test the performance of [57] once it is released and adapt it into our pipeline if it is

proved to be better than [27].

3.6.2 Probabilistic Light Source Activation and Relighting

Unlike most scene relighting methods that consider sunlight as the only light source [33, 50, 62], our day-

to-night simulation pipeline considers over 30 inactive light sources per scene (shown in Fig. 3.2). Thus, to

generate realistic and diverse nighttime images, we design the probabilistic light source activation kernel to

manage the activation of each light source. We define the activation of each light source as an independent

random variable with a Bernoulli Distribution f(p, l), where p is the probability for event l to happen, mean-

ing that there is a probability of p for the light source to be active and (1−p) to be inactive. Furthermore, we

also consider that light sources exhibit interdependence in the real world. For instance, adjacent windows

are likely to be active or inactive simultaneously, front light and rear light of a moving car are also to be

active together. To capture this real-life characteristic, we utilize group masks, as defined in Section 3.2,

to group light sources together. This grouping approach ensures that each group of light sources shares the

same p parameter yet remains independent from other groups. By incorporating this interdependency fea-

ture into our light source activation model, we can accurately emulate real-world light sources’ behaviour

and enhance our simulations’ authenticity. Once the scene mesh, material attributes, and light sources are

established, we perform ray tracing [58] to render the nighttime image. For each daytime image, we employ

various activation parameters for the inactive sources, creating multiple nighttime images.
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3.6.3 Image Post-processing

Nighttime images usually contain artifacts such as noise caused by low illumination and long exposure

time at night. To simulate this real-world scenario, we will apply post-processing to clear linear images

generated by ray tracing. Following [41], we plan to adopt the well-established heteroscedastic Gaussian

model [8, 9, 29, 35] for noise. Given a nighttime clear image Ic, we will generate the nighttime noisy image

In with the following equation:

In = Ic +N (0, β1Ic + β2) (3.10)

Where β1 and β2 are shot and read noise parameters, which we empirically determined based on measuring

the noise of real noisy/clean nighttime image pairs for different ISO levels.
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Results and Experiment Plans

In this section, we will apply our pipeline to images within the ACDC dataset and present the results of the

Geometry Mesh Reconstruction component. Additionally, we will demonstrate the generalizability of our

pipeline by applying it to other autonomous driving datasets. such as the Cityscapes dataset [6]. Further-

more, we will outline our testing plans for the entire pipeline.

4.1 Geometry Mesh Reconstruction

4.1.1 Datasets and Metrics

Datasets In this work, we used images in the ACDC dataset [47], which is a large-scale dataset consisting

of 4006 images evenly distributed across four different adverse conditions: snow, fog, rain and night. Each

adverse condition image comes with a high-quality fine pixel-level semantic annotation and a reference

image of the same scene taken under normal conditions (clear daytime). Our work mainly focused on

applying our pipeline to the reference split of the ACDC dataset. Except for the ACDC dataset, we also

use other autonomous driving datasets, including the BDD100K dataset [65], Cityscapes dataset [6] and the

Dark Zurich dataset [46]. In particular, we use daytime images and its corresponding semantic annotations

for all selected datasets, showing that our pipeline has a strong adaptability.

Metrics The Geometry Mesh Reconstruction component generates scene mesh and geometric information

such as depth and surface normal. However, none of the datasets mentioned above provide ground truth

for evaluation. Thus, we conduct a qualitative comparison of the generated mesh and its surface normals to

evaluate the Geometry Mesh Reconstruction component of our pipeline.

4.1.2 Mesh Comparison

In order to evaluate the qualitative result of our reconstructed mesh, we compare our mesh reconstruction

result with results from the following settings: (1) mesh constructed by the Worldsheet [17] using MiDaS

v2.1 [42] as the external depth backbone based on input RGB. (2) mesh constructed by the Worldsheet using

iDisc [39] as the external depth backbone. (3) mesh reconstructed by method presented in the SIMBAR [66]

using Dense Prediction Transformer (DPT) monodepth models [43] as the external depth backbone, shown

as Fig. 4.1. Moreover, we also compare surface normals of the generated mesh in Fig. 4.2, further showing

that our method can estimate most of the geometric characteristics and reconstruct better mesh. Noted that

for surface normal, we treated estimation of iDisc [39] as the ground truth. To show the effect of the mesh

post-processing kernel, we compared our reconstructed scene mesh with (2) and (3) from different viewing

angles, as shown in Fig. 4.3. We also present the optimization loss curve in Fig. 4.1.2. More qualitative

results on scene mesh reconstruction are presented in Appendix C.
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(a) RGB input (b) (1) (c) (2) (c) (3) (d) Ours

Figure 4.1: Mesh reconstruction result comparison. We compared the mesh reconstruction result with

mesh reconstructed by other methods with the following settings, (1): Worldsheet with MiDaS depth, (2):

Worldsheet with iDisc depth, (3): SIMBAR reconstruction. Our method can preserve more accurate geo-

metric information and construct smoother mesh surfaces than all other methods.

(a) RGB input (b) iDisc [39] (c) (1) (d) (2) (e) (3) (f) Ours

Figure 4.2: Inferred surface normal comparison. We compared the surface normal inferred from the

reconstructed mesh with other methods (as stated in Fig. 4.1.2). Our reconstructed meshes have more

accurate surface normal with respect to iDisc [39] surface normal.

(a) RGB input (b) (2) (c) (3) (d) Ours

Figure 4.3: Mesh comparison from different angles and background mesh. We compared the mesh

reconstruction result with mesh reconstructed by other methods (, as stated in Fig. 4.1.2.) with a 3 meters

zoom in and a 45 degrees rotation clockwise as well as background mesh generated with our pipeline.

The result shows that our method can efficiently break the unexpected connection between foreground and

background objects and make the background mesh watertight.
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(a) Loss curve of upper image (b) Loss curve of bottom image

Figure 4.4: Optimization loss curve. We present the optimization loss curve of two examples shown

in Fig. 4.1.2.

4.1.3 Generalization to Other Datasets

Our pipeline can be generalized to a wide range of datasets, including the Cityscapes dataset [6], the

BDD100K dataset [65] and the Dark Zurich dataset [46] daytime split. To demonstrate this on the Ge-

ometric Mesh Reconstruction component, we replace the input RGB Id and semantic annotation S with

samples from the new dataset. Fig. 4.5 illustrates the qualitative result of the scene mesh reconstructed from

different datasets. We observe that our pipeline exhibits excellent generalization across various datasets.

(a) (b) (c) (d)

Figure 4.5: Mesh reconstructed from different datasets. We showcase the mesh reconstruction based

on two different datasets: BDD100K dataset [65] (column (a) and (b)) and Cityscapes dataset [6] (column

(c) and (d)). The above results demonstrate the capability of our pipeline to generate reasonable scene

mesh when applied to other datasets. However, we notice that roads close to the camera are not correctly

reconstructed, this is a result of inaccurate surface normal prediction caused by the ego vehicle.
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4.2 Testing Plans

4.2.1 Datasets and Metrics

Datasets For the experiment of the entire pipeline, we will use the ACDC dataset [47] described in Sec-

tion 4.1.1. In particular, we will apply our pipeline to reference images in which semantic annotations are

available and conduct evaluation on the nighttime split testing set. The evaluation of the ACDC dataset is

done via an online server.

Metrics The goal of our experiment is to show that our synthetic nighttime images can serve as training data

and improve the performance of current segmentation detection methods. To evaluate the retrained model,

we will use the standard semantic segmentation evaluation method mean Intersection of Union (mIoU) and

the Uncertainty-Aware semantic segmentation Intersection of Union (AUIoU) introduced by [47]. The main

distinguishing feature of those methods is the incorporation of image regions that possess indiscernible

semantic content, referred as ºinvalid regionsº during the process of annotation and evaluation.

4.2.2 Experiments

Our experiments aim to demonstrate the superiority of our generated nighttime images over the original

images and other synthetic nighttime images for the task of semantic segmentation. To achieve this, we

will conduct a comprehensive evaluation by training various state-of-the-art methods and architectures us-

ing different versions of nighttime images and then evaluate them using the ACDC dataset nighttime testing

set. In particular, for the training data, we plan to use the original daytime reference images as the baseline,

comparing it with dimmed daytime images, CycleGAN [67] transferred nighttime images, our nighttime im-

ages, as well as the real nighttime images in the ACDC dataset [47]. To ensure robustness and accuracy, we

will train the model with various methods including DeepLabV3+ [4], SegFormer [61], Mask2Former [5],

and HRNet [52], as well as architectures including ResNet [15], Swin Transformer [30] and Vision Trans-

former [7]. Moreover, for each combination listed above, we also plan to train them with different sizes of

training datasets with nighttime images generated using our pipeline, showing that our pipeline is able to

generate multiple nighttime images from one single daytime image by activating different light sources com-

binations described in Section 3.6.2. We will report the mIoU and AUIoU of all methods on the nighttime

split of the ACDC dataset, as well as the IoU on each semantic class. Additionally, we will also present the

qualitative comparison of selected semantic segmentation methods, trained using different training datasets

listed above, on the ACDC dataset nighttime split. By presenting these qualitative results, we aim to better

understand how different datasets impact the segmentation results and pinpoint the strengths and weaknesses

of nighttime images generated using our pipeline.
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Conclusion

In this thesis, we have presented a physics-based pipeline NPSim that performs day-to-night transformation

with two components: Geometric Mesh Reconstruction and Realistic Nighttime Scene Relighting. This

work stands apart from all prior works as it is the first to accomplish the task of relighting outdoor scenes

from day to night using only a single image. The distinctiveness of our method lies in its explicit estimation

of the scene’s geometry and materials, and then integrate the estimated materials into the geometry alongside

the light sources. The innovative aspect is the consideration of light sources that remain inactive during the

daytime but become active at night. By incorporating these elements into the relighting process, this work

has the potential to achieve a remarkable advancement in generating realistic night scenes from daytime

photographs, setting it apart from all previous research in this field.

Our mesh reconstruction component reconstructs better scene mesh by preserving geometric informa-

tion such as depth and surface normal. It also gets rid of the potential unrealistic reflection by removing

spurious faces between foreground and background objects. Moreover, the proposed photo-realistic night-

time simulation is a general approach that can be applied to any daytime driving dataset for day-to-night

simulation without the need for real nighttime data. This alleviated the need to annotate large sets of real

nighttime images and made a significant contribution to constituting a bottleneck for nighttime semantic

scene understanding.

Meanwhile, we are also aware of several limitations of our method. Firstly, the generation of inactive

light source masks is not automated and requires some human input. This problem could be alleviated by

training a neural network using existing annotations to detect inactive light sources from daytime images.

Secondly, our mesh reconstruction depends heavily on the estimated geometric information, errors on esti-

mated depth and surface normal will make the reconstructed mesh inaccurate. We noticed that our current

depth prediction model is not capable of correctly predicting the surface normal of some parts of the road,

especially roads that are far away or under shadow. This is probably caused by domain shift between Diode

dataset [54], NYUv2 dataset [38] and the ACDC dataset [47]. We plan to fix it by trying out different mod-

els or retraining the current model on a dataset that is closer to the ACDC dataset. Lastly, our relighting

component did not consider motion blur caused by long exposure time at night, this may cause our gener-

ated nighttime images to be inconsistent with real nighttime images and lower the performance of trained

models. Our future works will focus on the simulation of motion blur for moving objects and to narrow the

gap between the simulated and real nighttime images.
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Appendix A

Light Source Annotation Examples
In this section, we present the appearance of each inactive light source class in both daytime and nighttime,

shown in Table A.1. Some common examples are omitted. We also provide more visual examples of our

annotation, shown in Fig. A.1.

Light source class Daytime appearance Nighttime appearance

window building

window parked

parked front

parked rear

window transport

street light HT

street light LT

advertisement

clock

inferred

Table A.1: Inactive light sources examples. We present examples of different types of inactive light

sources. The second and third columns show the daytime appearance and nighttime appearance of each

example, respectively, arranged in the same order.
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(a) Original RGB image (b) Inactive light source mask (c) Superposition of (a) and (b)

Figure A.1: More Annotation Examples. We present more examples of our inactive light source annota-

tion. The left column shows the original RGB image, the middle column shows the annotated inactive light

source mask, where each instance has its own identity and bounding box, and the right column superimposes

the RGB image and the light source mask.
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Hyper-parameter Tuning

To find the optimal choice of hyper-parameters used in the depth refinement kernel, we apply grid search

to decide λ1 ∼ λ3 in Eq. (3.9). In our experiment, we set λ1 to 1 and then changing λ2 and λ3 between

10−3 and 103.In particular, we select 7 values for each parameter: 10−3, 10−2, 10−1, 100, 101, 102, 103.

We tried out 49 different combinations in total. Next, we will present the effect of each loss term on mesh

reconstruction by showing qualitative results of reconstructed mesh and optimized surface normal.

During our experiments, the coefficient of continuity loss λ2 plays a more important role. When setting

λ2 small, gaps caused by sudden changes in depth will be created in both refined surface normal and recon-

structed mesh. Those gaps will not violate other loss terms much but will have a significant negative impact

on relighting. The upper row of Fig. B.1 shows an example of gaps on surface normals and reconstructed

mesh. Similarly, having λ2 too large will also cause some negative effects, as shown in the lower row of

Fig. B.1. Though it doesn’t have a negative effect on the refined surface normal, the final reconstructed mesh

will have some wave-like artifacts, this kind of effect is mainly caused by the dual-reference cross-bilateral

filter during depth refinement.

(a) Original RGB image (b) Refined surface normal (c) Reconstructed mesh

Figure B.1: Small λ2. We present an example of surface normal and final mesh with different λ2 values.

The upper row shows an example of setting λ2 too small and the lower row shows an example of setting λ2

too large.

Compared to λ2, λ3 (the coefficient of depth loss) plays a less important role. We discover that mak-

ing λ3 too large will not affect the reconstruction result much. However, having it too small will make
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(a) Original RGB image (b) Refined surface normal (c) Reconstructed mesh

Figure B.2: Large λ3. We present an example of surface normal and final mesh when setting λ3 too large.

the refined depth deviate more from the originally predicted depth, especially for foreground objects as

they are usually surrounded by uncertain regions. This will further result in wider uncertain regions and

remaining unexpected faces after after mesh post-processing component. We present one visual example in

the Fig. B.2.

Similarly, the effect of λ1 (the coefficient of normal loss) will largely depend on λ2 and λ3 together.

When setting both λ2 and λ3 large, the result will have a combined effect of large λ2 and large λ3, with

wider uncertain region and wave-like visual artifacts. When setting both λ2 and λ3 smaller, we observed

similar effects as shown in the upper row of Fig. B.1. In the end, we set λ1 = 1, λ2 = 5 and λ3 = 1
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Appendix C

Mesh Reconstruction Examples

In this section, we present more qualitative examples of the reconstructed mesh and its corresponding surface

normal, shown in the figure below. Mesh reconstructed using our method has smoother surface normal and

more detailed geometry information.

(a) RGB input (b) Corresponding surface normal (c) Reconstructed mesh

Figure C.1: More mesh reconstruction examples. We present more examples of mesh reconstructed using

our method and their corresponding surface normal.
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(a) RGB input (b) Corresponding surface normal (c) Reconstructed mesh

Figure C.2: More mesh reconstruction examples. We present more examples of mesh reconstructed using

our method and their corresponding surface normal.
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Appendix D

Model Selection

In this section, we present the selection process of network Fg and Fir. For network Fg, we directly use the

iDisc depth model pre-trained on the KITTI dataset [13]. However, for the surface normal prediction, as for

our own knowledge, all previous works have focused on indoor datasets such as the NYUv2 dataset [38].

To overcome the domain gap between indoor and outdoor scenes, we retrained the iDisc surface normal

network on the Diode dataset [54] outdoor split. To maximize the performance, we tried several training

settings, with their evaluation results shown in Table D.1.

Setting rmse angular a1(<5deg) a2(<11.5deg) a3(<22.5deg) a4(<30deg)

iDisc NYUv2 60.181 0.037 0.184 0.312 0.387

iDisc NYUv2+Diode 77.862 0.044 0.130 0.212 0.281

iDisc Diode 44.874 0.290 0.435 0.563 0.625

Table D.1: iDisc normal estimation retrain result. We present three different settings of our networks and

their corresponding evaluation result.
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