

NPSim: Nighttime Photorealistic Simulation From Daytime Images With Monocular Inverse Rendering and Ray Tracing

Shutong Zhang Department of Information Technology and Electrical Engineering

Supervisor: Dr. Christos Sakaridis, Prof. Luc Van Gool

Table of Contents

- Motivation
- Related Works
- Method
 - Data Collection
 - Geometry Mesh Reconstruction
 - Realistic Nighttime Scene Relighting
- Experiment
- Conclusion

Motivation

- Poor performance of current semantic segmentation methods on nighttime images.
- Nighttime images are hard to annotate.

Method	Fog	Night	Rain	Snow	All
RefineNet [24]	63.6	52.2	66.4	62.5	62.8
DeepLabv2 [5]	52.2	45.4	57.6	56.8	54.9
DeepLabv3+ [6]	68.7	59.2	73.5	70.5	69.6
HRNet [47]	70.8	63.2	72.7	70.2	70.9
RefineNet [24]	65.7	55.5	68.7	65.9	65.3
DeepLabv2 [5]	54.5	45.3	59.3	57.1	55.3
DeepLabv3+ [6]	69.1	60.9	74.1	69.6	70.0
HRNet [47]	74.7	65.3	77.7	76.3	75.0

Method	Fog	Night	Rain	Snow
Source model	33.5	30.1	44.5	40.2
AdaptSegNet [43]	31.8	29.7	49.0	35.3
ADVENT [46]	32.9	31.7	44.3	32.1
BDL [23]	37.7	33.8	49.7	36.4
CLAN [26]	39.0	31.6	44.0	37.7
FDA [53]	39.5	37.1	53.3	46.9
SIM [48]	36.6	28.0	44.5	33.3
MRNet [62]	38.8	27.9	45.4	38.7
Oracle	52.2	45.4	57.6	56.8

Related Works

- SIMBAR: Single Image-Based Scene Relighting For Effective Data Augmentation (Zhang et al. 2022)
 - Daytime Relighting: consider sun as only light source

Input

(a) SIMBAR Relights DIV2K Outdoor Racing Field

Input

(b) SIMBAR Relights DIV2K Dark Desert Scene

Related Works

- CycleGAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (Zhu et al. 2017)
 - Not able to accurately activate light sources result in unrealistic images

Related Works

- Day-to-Night Image Synthesis for Training Nighttime Neural ISPs (Punnappurath et al. 2022)
 - Consider light source as 2D
 - Result in dimmed daytime image

Method - Overview

Method - Data Collection

- $\bullet \quad \text{Inactive light source mask } \mathbf{M}_i$
 - Defined 21 classes of invalid light sources, including: building, vehicle, object and group
 - Manual annotation using Segments.ai

Binary mask

Superposition

Input RGB

Method - Data Collection

- Light source ${f E}$
 - Capture from real world using gray card
 - Extract both chromaticity and strength value: {(s, r/g, b/g)}

- \mathbf{F}_{g} : Learning based method iDisc to estimate depth and surface normals
 - Depth: pre-trained iDisc depth model on KITTI dataset
 - Surface normal: retrain iDisc model on DIODE dataset (outdoor depth)

- **Reconstruction**: Worldsheet to reconstruct mesh based on depth
 - Mesh grid depends only on depth and fixed offset $\Delta \hat{x}$ and $\Delta \hat{y}$.
 - Each mesh vertex maps to one depth value.

$$V_{w,h} = \left[egin{array}{c} d_{w,h} \cdot (\hat{x}_{w,h} + \Delta \hat{x}_{w,h}) \cdot an\left(heta_F/2
ight) \ d_{w,h} \cdot (\hat{y}_{w,h} + \Delta \hat{y}_{w,h}) \cdot an\left(heta_F/2
ight) \ d_{w,h} \end{array}
ight]$$

d: depth

 \hat{x},\hat{y} : equally spaced anchor positions on the grid

 $\Delta \hat{x}, \Delta \hat{y}$: grid offset

 θ_F : camera angle of view

- **Reconstruction**: Worldsheet to reconstruct mesh based on depth
 - Mesh grid depends only on depth and fixed offset $\Delta \hat{x}$ and $\Delta \hat{y}$.
 - Each mesh vertex maps to one depth value.

$$V_{w,h} = \begin{bmatrix} d_{w,h} \cdot (\hat{x}_{w,h} + \Delta \hat{x}_{w,h}) \cdot \tan(\theta_F/2) \\ d_{w,h} \cdot (\hat{y}_{w,h} + \Delta \hat{y}_{w,h}) \cdot \tan(\theta_F/2) \\ d_{w,h} \end{bmatrix}$$

• Intermediate result

Input RGB

Depth

Reconstructed Mesh

Not so good... :(

- **Depth refinement**: Dual-reference cross-bilateral filter
 - Dual reference: color and semantic annotations
 - Make depth sharper at semantic boundaries, preserve depth can be inferred by color

$$d(\mathbf{p}) = \frac{\sum_{q \in \mathcal{N}(\mathbf{p})} G_{\sigma_s}(\|\mathbf{q} - \mathbf{p}\|) \left[\delta(h(\mathbf{q}) - h(\mathbf{p})) + \mu G_{\sigma_c}(\|\mathbf{J}(\mathbf{q}) - \mathbf{J}(\mathbf{p})\|)\right] \hat{d}(\mathbf{q})}{\sum_{q \in \mathcal{N}(\mathbf{p})} G_{\sigma_s}(\|\mathbf{q} - \mathbf{p}\|) \left[\delta(h(\mathbf{q}) - h(\mathbf{p})) + \mu G_{\sigma_c}(\|\mathbf{J}(\mathbf{q}) - \mathbf{J}(\mathbf{p})\|)\right]}$$

- J: CIELAB counterpart of the input RGB image
- p,q: pixel location
- \mathcal{N} : neighbouring pixels
- h: semantic classes
- δ : Kronecker delta
- $G_{\sigma_s}, G_{\sigma_c}$: spatial Gaussian kernel colour Gaussian kernel

Input RGB

Depth before

Depth after

• Intermediate result

Input RGB

Depth

Reconstructed Mesh

Better now, but still not so good... :(

- **Depth refinement**: Dual-reference variance filter
 - Depth discontinuity: Create spurious faces
 - Uncertain region: Depth discontinuity at semantic boundaries

 $\mathcal{U}(r(\mathbf{p},l)) = (\mathcal{V}(d(r(\mathbf{p},l))) > \mu) \text{ and } (\mathcal{V}(h(r(\mathbf{p},l))) > 0)$

- **Depth refinement**: Dual-reference variance filter
 - Depth discontinuity: create spurious faces
 - Detect depth discontinuity at semantic boundaries

 $\mathcal{U}(r(\mathbf{p},l)) = (\mathcal{V}(d(r(\mathbf{p},l))) > \mu) \text{ and } (\mathcal{V}(h(r(\mathbf{p},l))) > 0)$

 $r(\mathbf{p},l) {:}\; l*l$ square region with \mathbf{p} as the upper-left pixel location

- $d(\cdot)$: depth of the region
- $h(\cdot)$: semantic label of the region
- V: variance operation

Input RGB

Semantic annotation

ר א^{מי} די הי

Depth map

Input RGB

Semantic annotation

Depth map

Input RGB

Semantic annotation

Depth map

- Depth refinement: Normal-guided depth refinement via optimization
 - Normal loss: Normals inferred from depth should match estimated normals
 - Continuity loss: Depth change should be continuous
 - Depth loss: Optimized depth should respect initial estimation

$$\hat{\mathbf{N}} = \nabla \mathbf{X} \times \nabla \mathbf{Y} = (1, 0, \frac{\partial z}{\partial x}) \times (0, 1, \frac{\partial z}{\partial y}) = (-\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}, 1)$$

$$L_{\text{normal}} = \|\mathbf{\hat{N}} - \mathbf{N}_{\text{est}}\|_2^2$$

$$L_{continuity} = \frac{1}{n} \sum_{i=1}^{n} ((\nabla \mathbf{X}_{i} \cdot \mathbf{N}_{i})^{2} + (\nabla \mathbf{Y}_{i} \cdot \mathbf{N}_{i})^{2}) \cdot (1 - \mathcal{U}_{i})$$

$$L_{depth} = \|\hat{d} - d_{est}\|_2^2$$

- **Depth refinement**: Normal-guided depth refinement
 - Final loss: Linear combination of all three losses

$$L_{final} = \lambda_1 L_{normal} + \lambda_2 L_{continuity} + \lambda_3 L_{depth}$$

- **Depth refinement**: Normal-guided depth refinement
 - Final loss: Linear combination of all three losses

$$L_{final} = \lambda_1 L_{normal} + \lambda_2 L_{continuity} + \lambda_3 L_{depth}$$

- Mesh post-processing: Remove uncertain spurious
 - Face deletion: Delete spurious faces between foreground and background objects
 - Spurious faces: At least one vertex falls into uncertain region

Input RGB

Semantic annotation

- Mesh post-processing: Background face completion
 - Determine regions needed to be completed: union of uncertain region and it neighbouring foreground object semantics

Semantic annotation

Uncertain region

Background completion region

- Mesh post-processing: Background face completion
 - Determine regions needed to be completed: union of uncertain region and foreground object semantics
 - Background objects: For each line of missing vertices, add new vertices linearly distributed between their left and right vertices

- **Mesh post-processing**: Foreground face completion
 - Determine regions needed to be completed: intersection of uncertain region and neighbouring foreground object semantics

Semantic annotation

Uncertain region

Foreground completion region

- Mesh post-processing: Foreground face completion
 - Determine regions needed to be completed: intersection of uncertain region and foreground object semantics
 - Foreground objects: Set depth of each missing vertex to the average of its neighbouring vertices belongs to the foreground object

0	0	0	•	•	•	•		0	0	0	•	•	•	•		0	0	C		(
0	0	0	•			lacksquare		0	0	0	•		•			0	0	C	•	(
0	0	0	•			lacksquare		0	0	0	0		•			0	0	C	•	(
0	0	0	0					0	0	•	0		•			0	0			(
0	0	•	0					0	0	0	0					0	0			(\longrightarrow	• • •					
0	0	0	0					0	0	0	•					0	0	C		(
0	0	0	•					0	0	0	•					0	0	C											
0	0	0						0	0	0	•		•			0	0	C		(
0	0	0						0	0	0	•		•			0	0	C		(

Method - Realistic Nighttime Scene Relighting [preview]

- F_{ir} : Inverse Rendering for Complex Indoor Scenes to estimate albedo and roughness
- Probabilistic light source activation:
 - Each light source as independent random variable with a Bernoulli Distribution
 - Light sources from same group shares the same activation parameter
- Ray tracing with scene mesh, material characteristics and light sources
- Post-processing to add noise on the clear nighttime image

Experiment - Mesh Comparison

Input RGB

iDisc + Worldsheet

SIMBAR

NPSim

Experiment - Mesh Post-processing

Input RGB

iDisc + Worldsheet Rotation View SIMBAR Rotation View NPSim Remove Foreground Objects

Experiment - ACDC Dataset

Reconstructed Mesh

Input RGB

Experiment - Generalization Cityscapes Dataset

Input RGB

Reconstructed Mesh

Experiment - Generalization BDD100K Dataset

Input RGB

Reconstructed Mesh

Conclusion

- NPSim: Day-to-night simulation pipeline based on monocular inverse rendering and ray tracing
- Mesh reconstruction: depth refinement kernel and mesh post-processing kernel
- Reconstruction result: on ACDC, Cityscapes, BDD100K
- Limitations:
 - Inactive light source mask requires manual annotation
 - Depth refinement may become inaccurate due to wrong normals estimation